Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Plant cell, tissue and organ culture ; : 1-13, 2023.
Article in English | EuropePMC | ID: covidwho-2259848

ABSTRACT

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7. Key Message Blue LED light was found to simultaneously promote the root growth and accumulation of medicinally important compounds (calycosin, formononetin, astragaloside IV, and astragaloside I) in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

2.
Plant Cell Tissue Organ Cult ; 153(3): 511-523, 2023.
Article in English | MEDLINE | ID: covidwho-2259849

ABSTRACT

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

3.
Biomed Pharmacother ; 156: 113807, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2285976

ABSTRACT

Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Pandemics , Kidney
4.
Cell Discov ; 9(1): 2, 2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2185790

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Antibody resistance dampens neutralizing antibody therapy and threatens current global Coronavirus (COVID-19) vaccine campaigns. In addition to the emergence of resistant SARS-CoV-2 variants, little is known about how SARS-CoV-2 evades antibodies. Here, we report a novel mechanism of extracellular vesicle (EV)-mediated cell-to-cell transmission of SARS-CoV-2, which facilitates SARS-CoV-2 to escape from neutralizing antibodies. These EVs, initially observed in SARS-CoV-2 envelope protein-expressing cells, are secreted by various SARS-CoV-2-infected cells, including Vero E6, Calu-3, and HPAEpiC cells, undergoing infection-induced pyroptosis. Various SARS-CoV-2-infected cells produce similar EVs characterized by extra-large sizes (1.6-9.5 µm in diameter, average diameter > 4.2 µm) much larger than previously reported virus-generated vesicles. Transmission electron microscopy analysis and plaque assay reveal that these SARS-CoV-2-induced EVs contain large amounts of live virus particles. In particular, the vesicle-cloaked SARS-CoV-2 virus is resistant to neutralizing antibodies and able to reinfect naïve cells independent of the reported receptors and cofactors. Consistently, the constructed 3D images show that intact EVs could be taken up by recipient cells directly, supporting vesicle-mediated cell-to-cell transmission of SARS-CoV-2. Our findings reveal a novel mechanism of receptor-independent SARS-CoV-2 infection via cell-to-cell transmission, provide new insights into antibody resistance of SARS-CoV-2 and suggest potential targets for future antiviral therapeutics.

5.
Mil Med Res ; 9(1): 68, 2022 12 02.
Article in English | MEDLINE | ID: covidwho-2196508

ABSTRACT

The application of single-cell RNA sequencing (scRNA-seq) in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies. With the expansion of capacity for high-throughput scRNA-seq, including clinical samples, the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field. Here, we review the workflow for typical scRNA-seq data analysis, covering raw data processing and quality control, basic data analysis applicable for almost all scRNA-seq data sets, and advanced data analysis that should be tailored to specific scientific questions. While summarizing the current methods for each analysis step, we also provide an online repository of software and wrapped-up scripts to support the implementation. Recommendations and caveats are pointed out for some specific analysis tasks and approaches. We hope this resource will be helpful to researchers engaging with scRNA-seq, in particular for emerging clinical applications.


Subject(s)
Biomedical Research , Data Analysis , Humans , RNA-Seq
6.
Cell Res ; 32(12): 1068-1085, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117525

ABSTRACT

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Mice , Humans , Rabbits , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral
7.
J Phys Chem B ; 126(26): 4828-4839, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1900410

ABSTRACT

As a type I viral fusion protein, SARS-CoV-2 spike undergoes a pH-dependent switch to mediate the endosomal positioning of the receptor-binding domain to facilitate viral entry into cells and immune evasion. Gaps in our knowledge concerning the conformational transitions and key intramolecular motivations have hampered the development of effective therapeutics against the virus. To clarify the pH-sensitive elements on spike-gating the receptor-binding domain (RBD) opening and understand the details of the RBD opening transition, we performed microsecond-time scale constant pH molecular dynamics simulations in this study. We identified the deeply buried D571 with a clear pKa shift, suggesting a potential pH sensor, and showed the coupling of ionization of D571 with spike RBD-up/down equilibrium. We also computed the free-energy landscape for RBD opening and identified the crucial interactions that influence RBD dynamics. The atomic-level characterization of the pH-dependent spike activation mechanism provided herein offers new insights for a better understanding of the fundamental mechanisms of SARS-CoV-2 viral entry and infection and hence supports the discovery of novel therapeutics for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
8.
Natural Gas Industry B ; 2022.
Article in English | ScienceDirect | ID: covidwho-1773662

ABSTRACT

China's shale gas production in 2020 exceeds 200 × 108 m³, which creates a miracle in the history of natural gas development in China. The Sichuan Basin has already been and will be the main battlefield of shale gas exploration and development in China. In order to further promote the large-scale efficient development of shale gas in China, under the new situation of global COVID-19 spread and domestic “carbon peak and carbon neutrality” goal, this paper analyzes the progress and challenges of shale gas exploration and development in the Sichuan Basin from four aspects, including resource exploration, gas reservoir engineering, drilling and production engineering and industry regulation, and puts forward countermeasures and suggestions for achieving large-scale efficient development of shale gas. The following research results are obtained: First, the large-scale efficient development of shale gas in the Sichuan Basin has to take the sustainable and stable production of middle–shallow shale gas and the large-scale productivity construction of deep shale gas as the base. Second, compared with the shale gas exploration and development in the North America, the Sichuan Basin has its own characteristics in terms of geographical setting, geological condition, drilling and production technology and industry regulation, which makes it difficult to copy the development pattern of large scale, high density and continuous well deployment from the North America, so it is necessary to adopt the strategy of “high production with few wells”. On the one hand, continue to apply the geology and engineering integration technology to carry out “integrated research, integrated design, integrated implementation and integrated iteration” in the whole life cycle of shale gas well;and on the other hand, carry out problem-oriented continuous researches from the aspects of geological evaluation, development policy, engineering technology and industry regulation, so as to improve geological evaluation theory and technology, innovate gas reservoir engineering theory and method, research and develop engineering technology for cost reduction and efficiency improvement, improve shale gas industry regulation, and form a new pattern of collaborative promotion of technical and non-technical elements. In conclusion, the research results provide important reference and guidance for the large-scale efficient development of shale gas in the Sichuan Basin and even the whole country.

9.
Chin Med J (Engl) ; 133(9): 1051-1056, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-1722622

ABSTRACT

BACKGROUND: Medicines for the treatment of 2019-novel coronavirus (2019-nCoV) infections are urgently needed. However, drug screening using live 2019-nCoV requires high-level biosafety facilities, which imposes an obstacle for those institutions without such facilities or 2019-nCoV. This study aims to repurpose the clinically approved drugs for the treatment of coronavirus disease 2019 (COVID-19) in a 2019-nCoV-related coronavirus model. METHODS: A 2019-nCoV-related pangolin coronavirus GX_P2V/pangolin/2017/Guangxi was described. Whether GX_P2V uses angiotensin-converting enzyme 2 (ACE2) as the cell receptor was investigated by using small interfering RNA (siRNA)-mediated silencing of ACE2. The pangolin coronavirus model was used to identify drug candidates for treating 2019-nCoV infection. Two libraries of 2406 clinically approved drugs were screened for their ability to inhibit cytopathic effects on Vero E6 cells by GX_P2V infection. The anti-viral activities and anti-viral mechanisms of potential drugs were further investigated. Viral yields of RNAs and infectious particles were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and plaque assay, respectively. RESULTS: The spike protein of coronavirus GX_P2V shares 92.2% amino acid identity with that of 2019-nCoV isolate Wuhan-hu-1, and uses ACE2 as the receptor for infection just like 2019-nCoV. Three drugs, including cepharanthine (CEP), selamectin, and mefloquine hydrochloride, exhibited complete inhibition of cytopathic effects in cell culture at 10 µmol/L. CEP demonstrated the most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect [EC50] of 0.98 µmol/L. The viral RNA yield in cells treated with 10 µmol/L CEP was 15,393-fold lower than in cells without CEP treatment ([6.48 ±â€Š0.02] × 10vs. 1.00 ±â€Š0.12, t = 150.38, P < 0.001) at 72 h post-infection (p.i.). Plaque assays found no production of live viruses in media containing 10 µmol/L CEP at 48 h p.i. Furthermore, we found CEP had potent anti-viral activities against both viral entry (0.46 ±â€Š0.12, vs.1.00 ±â€Š0.37, t = 2.42, P < 0.05) and viral replication ([6.18 ±â€Š0.95] × 10vs. 1.00 ±â€Š0.43, t = 3.98, P < 0.05). CONCLUSIONS: Our pangolin coronavirus GX_P2V is a workable model for 2019-nCoV research. CEP, selamectin, and mefloquine hydrochloride are potential drugs for treating 2019-nCoV infection. Our results strongly suggest that CEP is a wide-spectrum inhibitor of pan-betacoronavirus, and further study of CEP for treatment of 2019-nCoV infection is warranted.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Cell Line , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Drug Approval , Humans , Pandemics , Pneumonia, Viral/diagnosis , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load , COVID-19 Drug Treatment
10.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585884

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Front Psychol ; 12: 753568, 2021.
Article in English | MEDLINE | ID: covidwho-1485110

ABSTRACT

University students' study outcomes, their psychological wellbeing in particular, have been considered closely by both education researchers and practitioners. It is worth exploring ways to improve the quality of life of students, especially during the pandemic period when millions of students around the world have taken online courses at home. This paper tests the influence of playfulness on the levels of life satisfaction and school burnout of college students. To examine our hypotheses, we distributed our survey to 353 Chinese university students (mean age 20.10 years) in their online learning semester in 2020 due to the outbreak of COVID-19. Correlation analysis and path analysis were applied to analyze the data. The results show that playfulness positively relates to life satisfaction and negatively correlates to school burnout. Moreover, a sense of control mediates these relationships. Both theoretical and practical implications are discussed.

12.
Signal Transduct Target Ther ; 6(1): 328, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1392810

ABSTRACT

Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cellular Microenvironment/immunology , Lung/immunology , Receptors, CXCR3/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Disease Models, Animal , Inflammation/immunology , Inflammation/pathology , Interferon-alpha/immunology , Interleukin-6/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male
13.
Zool Res ; 42(5): 633-636, 2021 Sep 18.
Article in English | MEDLINE | ID: covidwho-1369995

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the global coronavirus disease 2019 (COVID-19) pandemic. Numerous studies have demonstrated that cardiovascular disease may affect COVID-19 progression. In the present study, we investigated the effect of hypertension on viral replication and COVID-19 progression using a hypertensive mouse model infected with SARS-CoV-2. Results revealed that SARS-CoV-2 replication was delayed in hypertensive mouse lungs. In contrast, SARS-CoV-2 replication in hypertensive mice treated with the antihypertensive drug captopril demonstrated similar virus replication as SARS-CoV-2-infected normotensive mice. Furthermore, antihypertensive treatment alleviated lung inflammation induced by SARS-CoV-2 replication (interleukin (IL)-1ß up-regulation and increased immune cell infiltration). No differences in lung inflammation were observed between the SARS-CoV-2-infected normotensive mice and hypertensive mice. Our findings suggest that captopril treatment may alleviate COVID-19 progression but not affect viral replication.


Subject(s)
Antihypertensive Agents/therapeutic use , COVID-19/complications , Captopril/therapeutic use , Hypertension/complications , Lung Diseases/drug therapy , SARS-CoV-2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Gene Expression Regulation/drug effects , Inflammation/complications , Inflammation/drug therapy , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lung Diseases/etiology , Lung Diseases/virology , Mice , Virus Replication/drug effects
14.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3905416

ABSTRACT

To what extent did independent directors help firms’ recovery during the COVID-19 pandemic? In this paper, we answer this question by investigating whether independent directors contribute to Chinese listed firms’ operation income growth during the first and second quarters of the year 2020. By employing a triple difference-in-differences (DDD) estimation strategy, we show that firms located in more pandemic-affected regions experienced a more pronounced operating recovery if they receive more independent directors’ opinions and have fewer female and busy directors. The possible reason is that those female and busy directors were likely to be distracted during the pandemic outbreak. We also provide evidence that firms paying higher remunerations to independent directors tend to recover quicker. Moreover, independent directors’ age and education level positively contribute to firms’ recovery. Our work is among the first to study independent directors’ role in shaping firms’ operation performance under the COVID-19.


Subject(s)
COVID-19
15.
J Agric Food Chem ; 68(41): 11434-11448, 2020 Oct 14.
Article in English | MEDLINE | ID: covidwho-1301138

ABSTRACT

The dried fruits of Amomum tsao-ko were first revealed to have hypoglycemic effects on db/db mice at a concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 19 new flavanol-fatty alcohol hybrids, tsaokoflavanols A-S (1-19), were isolated and determined by extensive spectroscopic data and ECD calculations. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which 1, 2, 6, 11, and 18 exhibited obvious activity against α-glucosidase with IC50 values of 5.2-9.0 µM, 20-35 times stronger than that of acarbose (IC50, 180.0 µM); meanwhile, 6, 10-12, and 19 were PTP1B/TCPTP-selective inhibitors with IC50 values of 56.4-80.4 µM, 2-4 times stronger than that of suramin sodium (IC50, 200.5 µM). Enzyme kinetics study indicated that compounds 1, 2, 6, and 11 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values of 13.0, 11.7, 2.9, and 5.3 µM and 142.3, 88.9, 39.2, and 40.8 µM, respectively. Docking simulations proved the importance of hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl in binding with α-glucosidase and PTP1B.


Subject(s)
Amomum/chemistry , Fatty Alcohols/chemistry , Flavanones/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Fatty Alcohols/isolation & purification , Flavanones/isolation & purification , Fruit/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Hypoglycemic Agents/isolation & purification , Plant Extracts/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , alpha-Glucosidases/chemistry
16.
Front Pharmacol ; 11: 1071, 2020.
Article in English | MEDLINE | ID: covidwho-726004

ABSTRACT

BACKGROUND: Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing an unprecedented pandemic. However, there is no specific antiviral therapy for coronavirus disease 2019 (COVID-19). We conducted a clinical trial to compare the effectiveness of three antiviral treatment regimens in patients with mild to moderate COVID-19. METHODS: This was a single-center, randomized, open-labeled, prospective clinical trial. Eligible patients with mild to moderate COVID-19 were randomized into three groups: ribavirin (RBV) plus interferon-α (IFN-α), lopinavir/ritonavir (LPV/r) plus IFN-α, and RBV plus LPV/r plus IFN-α at a 1:1:1 ratio. Each patient was invited to participate in a 28-d follow-up after initiation of an antiviral regimen. The outcomes include the difference in median interval to SARS-CoV-2 nucleic acid negativity, the proportion of patients with SARS-CoV-2 nucleic acid negativity at day 14, the mortality at day 28, the proportion of patients re-classified as severe cases, and adverse events during the study period. RESULTS: In total, we enrolled 101 patients in this study. Baseline clinical and laboratory characteristics of patients were comparable among the three groups. In the analysis of intention-to-treat data, the median interval from baseline to SARS-CoV-2 nucleic acid negativity was 12 d in the LPV/r+IFN-α-treated group, as compared with 13 and 15 d in the RBV+IFN-α-treated group and in the RBV+LPV/r+ IFN-α-treated group, respectively (p=0.23). The proportion of patients with SARS-CoV-2 nucleic acid negativity in the LPV/r+IFN-α-treated group (61.1%) was higher than the RBV+ IFN-α-treated group (51.5%) and the RBV+LPV/r+IFN-α-treated group (46.9%) at day 14; however, the difference between these groups was calculated to be statistically insignificant. The RBV+LPV/r+IFN-α-treated group developed a significantly higher incidence of gastrointestinal adverse events than the LPV/r+ IFN-α-treated group and the RBV+ IFN-α-treated group. CONCLUSIONS: Our results indicate that there are no significant differences among the three regimens in terms of antiviral effectiveness in patients with mild to moderate COVID-19. Furthermore, the combination of RBV and LPV/r is associated with a significant increase in gastrointestinal adverse events, suggesting that RBV and LPV/r should not be co-administered to COVID-19 patients simultaneously. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, ID: ChiCTR2000029387. Registered on January 28, 2019.

17.
Hu Li Za Zhi ; 68(1): 43-53, 2021 Feb.
Article in Chinese | MEDLINE | ID: covidwho-1100322

ABSTRACT

BACKGROUND: Because of the COVID-19 epidemic, people are mostly isolated at home and must seek medical advice over the internet. In addition, government authorities are currently investing greater efforts in developing internet hospitals. PURPOSE: The purpose of this essay was to assess how outpatients feel about online outpatient clinics and to analyze the factors that affect their satisfaction and willingness to return to these clinics. The results provide advice regarding how to more effectively encourage patients to use online outpatient clinics. METHODS: A self-developed questionnaire was used to survey 191 patients who had visited the online outpatient clinic of a tertiary hospital in Sichuan Province from January to July 2019. A descriptive analysis was conducted on the collected data, and factors influencing satisfaction were identified. RESULTS: The majority of the surveyed patients were young or middle-aged (92.7%) and 42.9% held a college degree or higher. Nearly three-quarters (72.2%) expressed feeling satisfied or better with the online outpatient clinic, with 31.4% of these expressing feeling very satisfied. Nearly all (91.1%) expressed the opinion that the online outpatient clinic had improved their awareness of health self-management . Furthermore, 176 (92.1%) were willing to use the online outpatient clinic again. The results of univariate analysis showed that the main factors negatively influencing re-use of the online outpatient clinic were: failure to solve the problem in a timely manner (χ2 = 8.603, p = .045), the complicated process of online registration (χ2 = 8.322, p = .016), the failure of the online physical examination (χ2 = 8.958, p = .015), and unreliable quality (χ2 = 15.373, p = .004). CONCLUSIONS: The participants surveyed in this study reported a lower satisfaction for their online outpatient clinic experience than reported in similar surveys of traditional outpatient services. However, many reported that their health-related self-management awareness had improved after use, indicating that they feel better about the online outpatient clinic. The factors that affected willingness to reuse to the online outpatient clinic related mainly to imperfections related to the clinic and its inability to adequately meet patient needs. Online outpatient clinics should simplify the process of registration, improve functions, and increase service functions such as online examination appointments and follow-up visits to improve patient satisfaction.


Subject(s)
COVID-19 , Aged , Ambulatory Care Facilities , Humans , Middle Aged , Patient Satisfaction , Retreatment , SARS-CoV-2 , Surveys and Questionnaires
18.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(9): 1139-1144, 2020 Sep.
Article in Chinese | MEDLINE | ID: covidwho-883890

ABSTRACT

2019 Novel coronavirus (2019-nCoV) infection has caused a global pandemic. Although researchers have carried out a lot of research on 2019-nCoV, analyzed the molecular structure and conducted evolutionary tree analysis, there is still insufficient understanding of its specific pathogenic mechanism, resulting in the lack of specific and effective therapeutic drugs and method. 2019-nCoV infection can cause inflammation and may deteriorate to acute respiratory distress syndrome (ARDS) and sepsis, which have become the main complication of its death. Therefore, using antiviral and symptomatic treatment with inflammation reduction can have a better therapeutic effect. Mesenchymal stem cells (MSCs) not only have a significant immune-regulation function, but also play a role in regeneration and repair, repairing damaged lungs, so they can be considered as a new effective method for the treatment of coronavirus disease 2019 (COVID-19). This article analyzes the main pathogenic mechanism of 2019-nCoV, and the process of developing into ARDS, combined with the research status of MSCs, to explore its significance and feasibility for the treatment of COVID-19. Finally, it will provide a substantial theoretical basis for clinical treatment now and in the future.


Subject(s)
Betacoronavirus , Coronavirus Infections , Mesenchymal Stem Cell Transplantation , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2
19.
SN Compr Clin Med ; 2(10): 1717-1723, 2020.
Article in English | MEDLINE | ID: covidwho-731189

ABSTRACT

On February 6, 2020, Xiaogan City became the second most seriously affected city with coronavirus disease 2019 (COVID-19), outside Wuhan district, Hubei Province, China. The objectives are to study the clinical features of COVID-19 patients and assess the relationship between the severity of COVID-19, age, and C-reactive protein (CRP) levels. The retrospective data of 134 COVID-19 patients hospitalized in 3 hospitals of Xiaogan City, between February 1 and March 1, 2020, was collected. This study documented COVID-19 patients. Clinical data in terms of body temperature, history of travel, and direct contact with COVID-19 patients, and incubation period was collected. Out of the 134 patients, only 5 required intensive care. Moreover, 2 patients succumbed during this period. The median age of patients was 45 (33-56) years. The most common symptoms at the onset of disease were fever (66.4%), cough (33, 6%), and sore throat (14.7%). Amongst the medicines used, antiviral agents (92.3%) followed by the traditional Chinese medicine (89.5%) were most commonly used. In both the crude and adjusted (I to III) models, odds ratio and its 95% confidence interval for both age and CRP levels were > 1. Moreover, the smooth curve fitting graph reflected that the severity of COVID-19 was positively correlated with both age and CRP levels (all P value < 0.05). The signs and symptoms of COVID-19 patients were fairly moderate. The health care professionals treating the COVID-19 patients should be aware of the increased likelihood of progression to severe COVID-19 in elderly patients and those with high CRP levels.

20.
Med. J. Chin. Peoples Liberation Army ; 5(45):475-480, 2020.
Article in Chinese | ELSEVIER | ID: covidwho-701007

ABSTRACT

Objective To provide a basis for further optimizing the diagnosis and treatment strategies of severe and critical corona virus disease 2019 (COVID-19) by investigating and analyzing the epidemiological and clinical characteristics of the death cases. Methods The epidemiological and clinical characteristics of 47 death cases obtained from Huoshenshan Hospital in Whuhan, Hubei Province were retrospectively analyzed. Results All the patients developed initial symptoms in Wuhan. The time from onset to admission was (12.60±5.60) days. Most of them were male (68.09%) with non-nosocomial infection (91.49%), advanced age (>60 years, 89.36%). Over half of the cases (51.06%) reported a history of contact with suspected or confirmed patients, and comorbidity of chronic diseases (70.21%). Multiple organ dysfunction syndrome (MODS) occurred in 29 cases (61.70%) with heart failure (51.06%) and renal failure (36.17%). The main clinical symptoms included fever, fatigue, dyspnea and cough. At admission,most cases were severe (55.32%) or critical (42.55%), and the in-hospital survival was longer for the severe than for the critical (P=0.02). 76.59% of the patients received invasive mechanical ventilation, and they had a longer in-hospital survival than those with non-invasive mechanical ventilation (P<0.05). Conclusions This group of cases occurred during the peak of the COVID-19 outbreak in China, characterized by male, elder and history of chronic diseases. Acute respiratory distress syndrome (ARDS) caused by COVID-19 was responsible for patients' death, and MODS manifestated by heart and kidney failure also implicated in the process. Disease severity and invasive mechanical ventilation were related to in-hospital survival.

SELECTION OF CITATIONS
SEARCH DETAIL